정답
(1) \(\displaystyle \cos h ^{2} x-\sin h ^{2} x= \left ( \frac {e ^{x} +e ^{-x}} {2} \right) ^{2} - \left ( \frac {e ^{x} -e ^{-x}} {2} \right) ^{2} =1 \)
(2) \(\displaystyle ( \sin hx) ' = \left ( \frac {e ^{x} -e ^{-x}} {2} \right) ' = \left ( \frac {e ^{x} +e ^{-x}} {2} \right) =\cos hx \)
\(\displaystyle ( \cos hx) ' = \left ( \frac {e ^{x} +e ^{-x}} {2} \right) ' = \left ( \frac {e ^{x} -e ^{-x}} {2} \right) =\sin hx \)
이므로
\(\displaystyle \tan h ' x= \left ( \frac {\sin hx} {\cos hx} \right) ^{' } = \frac {\cos h ^{2} x-\sin h ^{2} x} {\cos h ^{2} x} = \frac {1} {\cos h ^{2} x} =\sec h ^{2} x \)
\(\displaystyle \therefore ~\tan h ' x=\sec h ^{2} x \)
\(\displaystyle \int _{} ^{} {\tan h ^{2} x} dx= \int _{} ^{} {1-\sec h ^{2} x} dx=x-\tan hx+C \)